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TRANSPORT PROCESSES IN VIBRATIONALLY EXCITED MOLECULAR GASES 

S. V. Dobkin and E. E. Son UDC 539.196 

There has recently been significantly increased interest in studies and applications of 
molecular gases in conditions far from equilibrium when the amount of vibrational energy of the 
molecules markedly exceeds the equilibrium value corresponding to the temperature of the gas. 
Such conditions occur in gaseous discharges, in outflow of a very hot gas from a nozzle, in 
relaxation zones behind shock waves, etc. The distribution of molecules in the vibrational 
states can be of a non-Boltzmann character in these conditions and therefore the transport 
processes in a vibrationally excited nonequilibrium gas differ from the equilibrium case. For 
a small difference between the vibrational and translational temperature when the Boltzmann 
distribution of vibrational degrees of freedom is realized via fast V-V processes, the trans- 
port coefficients are calculated in [i, 2]. Here we analyze the case of a large difference 
between the vibrational and translational temperature when the regime of quasiresonance ex- 
change is realized [3]. Moreover, for low vibrational levels (i ~ i,) the distribution of 
molecules on the vibrational levels is of the Treanor type with a characteristic vibrational 
temperature T V determined by the full margin of the vibrational energy; on higher levels 

(i, < i ~ i**) the distribution of molecules forms a plateau which for i > i** becomes the 
equilibrium Boltzmann distribution with the gas temperature T via a strong V-T exchange. We 
will limit ourselves to the case when the spatial inhomogeneities only slightly perturb the 
above distribution. For weak variations of the parameters in space and time one obtains a 
quasistationary and quasihomogeneous regime when the distribution preserves its form and is 
determined by its local parameters - gas and vibrational temperatures. This approximation 
holds when the flow of molecules in vibrational levels is much larger than the flow due to 
spatial diffusion [4]. 

The kinetic equation for the distribution function of molecules in velocities and non- 
equilibrium populations has the form of Wang Chang-Uhlenbeck equations [5] 

= ~ T V T  l 
+ + + + (1)  

Here fai (va, r, t) is the distribution function in velocities of particles of type a in vibra- 
tional state i with velocity v~; on the right-hand side we have the collisional integrals tak- 
ing into account the ~rocesses of elastic J~i TT and inelastic Jai R collisions including V-V 
(J~i VV) and V-T (J~i VY) exchanges and sources J~i s of population of the vibrational levels due 
to external interaction (excitation by electron impact, infrared radiation, laser-chemical re- 
actions, etc.); e << 1 is the Knudsen number; n = OR/OTT is the ratio of the cross sections of 
the inelastic and elastic processes. In contrast to the equilibrium Boltzmann population of 
the vibrational levels when N << i, in the considered conditions the effects of vibrational 
anharmonicity are substantial when the cross sections of the inelastic processes on upper vi- 
brational levels equal the cross sections of the elastic processes and therefore N ~ i. To 
obtain the solution of the kinetic equation in this case we will use the generalized Chapman- 
Enskog method [6] developed for arbitrary ratios of elastic and inelastic processes (i.e. the 
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parameter G can take the values E ~ q ~ i). The distribution function of particles will be 
expanded in powers of the small parameter ~: 

/~  =/$~  + e]~.  ( 2 ) 

In the zero-order (in E) approximation for arbitrary values of q (E ! q 2 I) the distribution 
function fai (~ is Maxwellian [6]. For the population of the vibrational states n i in the same 
approximation one obtains the usual equations of level kinetics [6] and for high pumping in- 
tensity one realizes a distribution function in vibrational levels that contains the plateau 
[3]. The integrals of inelastic collisions in (i) are of the order of E [6] and must be taken 
into account in the next approximation (next power of the Knudsen number) to calculate the 
transport coefficients. 

In the spatially inhomogeneous case, when the distributions in velocities and vibrational 
states are only slightly perturbed, the distribution parameters T, T V, n i depend only on the 
coordinates and time. The hydrodynamic equations of the zero-order approximation are obtained 
from (i) by substituting fai (~ for fai and by integrating over velocities with weights cor- 
responding to the collisional invariants. In order to find the equations determining the dis- 
tribution function of the first-order approximation we substitute the expansion (2) into the 
kinetic equation (I). As a result we get a linearized Boltzmann equation where, according to 
[6], we need only the symmetrized part of the integral operator of the inelastic collisions, 
denoted by the superscript RS: 

dr(o) 
.~  . (~(o) I~'7). (3) 

The most essential effect in an inhomogeneous vibrationally excited gas arises in calcu- 
lation of the thermal fluxes of the translational qT and vibrational qV energy. A crude es- 
timate of the energy transport by vibrationally excited molecules can be obtained by comparing 
the phenomenological expressions of the fluxes of vibrational and translational energy and 
finding the margin of vibrational quanta n v using the distribution function discussed above 
[ 3 ] :  

t 
q.V..V ~ "~" nvElVT i'E1 { Elf* k 
qT - -  t ~ ~ exp ~-- ~ ] in ~**-=~--. (4)  

T nokTVT 

Here E 1 i s  t h e  m a g n i t u d e  of  a q u a n t a ;  v T i s  t h e  t h e r m a l  v e l o c i t y .  For  i n s t a n c e ,  f o r  t h e  v i -  
brationally excited CO for T V = 4500 K, T = 300 K, i, = 6, and i,, x 49 it follows from the 
estimate (4) that the vibrational levels transport twice as much energy as the translational 
degrees of freedom. 

Since we are interested only in processes of thermal conduction we will write the part 
of the linearized equation (3) describing heat conduction in a one-component gas (omitting 
index a) of anharmonic oscillators: 

{[( O lnn i ]  ]~o) w2_5)+ o_i~Jv.VlnT+__. 

= J V  (]7), + s g  �9 \ J i  *~  s l  ,,? 

0 In n i I 
0 In T v v. V in Tvj = 

w = ( m / 2 k T )  ~/2.v. 

(5) 

The solutions of Eq. (5) have the form 

](/1) = - -  ~b~ 0) [ A ?  ) (w,  hi)  w .V In  T + A~ ~) (w, n~) w .V In r v ]  

with the normalization conditions 

~..(1) (~)...2.~a... E ]iY-li ' u: c~ u., = 0, J i 

Equation (5) breaks down into two independent equations 

5 a ]nn  i ] f fTT  (~(o) ~(1) J(o)h 3rR8 (~r --(1) .(0)h 
]~o) l.V2 ..~.._{._ O. . .~] ._~_jV=_ i \ s i  , d-li W ] i  ] +  x~z , ~ i  W]i  J,  

]~o) [ a In n~ ] TT/ . (o )  A?)w]~O)) Rs A~2)w/~O)). 

(6) 

(7) 
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The expressions for fluxes are the following 

= -  :vr. xivr   = - 

where the thermoconductivity coefficients can be determined from 

k $i  * ' i  

k : :: x :): ,o, <.,. = ] i  A i  w ~ v ,  
i 

$ 

2 = E E~n:, "~ ni = l. 
i i 

The solution of Eqs. (6), (7) will be sought in the form of expansion inorthogonal poly- 
nomials Qrp of Waldman-Trubenbacher for the expansion in the discrete internal energy levels 
[7] and of Sonine [8] for the reduced velocities with unknown coefficients ~p: 

A (j) = ~ a{pO rp, ] = t, 2. (8) 
rp  

Subs t i t u t i ng  the expansion (8) in to  Eqs. (6) ,  (7) ,  and i n t e g r a t i n g  over v e l o c i t i e s  with cor-  
responding weights and summation over the vibrational levels, we obtain a system of linear al- 
gebraic equations for the coefficients a~p in the second approximation in Qrq: 

s,q 

R: o = 7.5, R~, = 3r . - -~- '~~ 
�9 T v ~ OT 

On i R 0=0. 

Using the  s tandard t r ans fo rmat ions  [8] the i n t e g r a l  brackets  Grpsq reduce to express ions  ob- 
t a ined  by Wang Chang and Uhlenbeck [5],  with appropr ia te  replacement of the t r a n s l a t i o n a l  tem- 
pe ra tu re  T by the effective vibrational temperature TV: 

i jhl 

~AEj (AEI~2 
F~0:0 __ _ @ 4  s i n  o- % _ 4 g  - ~  s i n  2 %'-- ~- \ kT J ' 

FifO: F~::o 5 (AE~? 
2 k2Tv T 

AE: = Ei + Ej - -  Ek - -  El~ g~ = g~ + AE1 
kT" 

(9) 

In order to evaluate the integral it is necessary to estimate the contribution of the elastic 
and inelastic collisions. At low gas temperatures (T ~ 100-700 K) the cross sections for the 
V-T exchange are far less than the cross sections for the V-V exchange [3], but in contrast 
with harmonic molecules in the anharmonic case this statement is not valid for the entire set 
of vibrational levels. The presence of the exponential factor in the expressions for the ex- 
change probability in the anharmonic case leads to a situation where the probability of the 
V-T exchange grows faster and the probability of the V-V exchange slower than the correspond- 
ing probabilities for the harmonic oscillator [3]. Also, for large vibrational numbers i the 
probability of the V-V exchange begins to decrease with increasing i due to the growing reso- 
nance defect 5E I. For high vibrational levels the corresponding probabilities become equal. 
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O1 
For example, for nitrogen Pi+i,i = Qi+l,i f~ il = 30, T = 700 K and the number of this level 
increases slightly for lower temperatures (similar estimates hold for CO). However, the 
populations of these levels are extremely low, e.g., for T V ~ 2700 K and 700 K ~ T ! 500 K i i 
is in the region above the plateau where nil/n 0 ~ I0-6-i0-4; for 500 K ~ T ~ i00 K i I is in 
the region at the edge of the plateau where nil/n 0 ~ i0 -4 - 5"10 -3 Therefore one can neglect 
the contribution of the V-T processes in comparison with the V-V processes to the integral 
of G rpsq. 

Now we estimate the contribution of the V-V processes to G rpsq taking into account only 
the single-quantum transitions. In the regime of quasiresonance exchange the resonance de- 
fect hE i = 2AE[m y i[ for a single-quantumV-V exchange (i + i, m) § (i, m + i) is far smaller 
than the gas temperature T [3]. Moreover, there is also a small parameter T/T V. Therefore 
the terms in (9) that contain the parameters AEI/kT and AEI/kT V can be neglected. It remains 
to estimate the term G ~176 which can be brought to the form 

~iF.3 S [ {Ei-Ei"I2 (E~--Ei)(EI,,--Et) ] ~i~.20 l 
G ~176 : ~ e x p ( - - g 2 )  2gSn~n \ kTv ) kTv kTv - -  cos X] (hja ..ag. (10)  

We will identify in (i0) the contributions of the elastic and V-V processes. In the 
sin$1e-quantum V-V exchange approximation the cross section for the elastic process is equal 
oi~lJ = aQ(l - Qili+l,J -i - Qiji-i,J+i), the cross section for the V-V exchange aiji+i,J -l = 
o0~iii+i,J -I, oiil-l,J +i = o0Q~ii+i,J -i where o 0 is the total elastic cross section, Q's are 
the ~robabilities of the corresponding single-quantum transfers, depending on the relative 
velocities of the colliding molecules and the polar angle specifying the direction of the 

vector gf relative to g. 

To estimate the contribution of the V-V exchange in (i0) we will put the resonance defect 
equal to zero in the probabilities Q. Further, the dependence of Q on the vibrational level is 
the same as in the harmonic oscillator [3], and the estimate of the contribution of the V-V 
processes is: obviously a little too high. 

By summing over the vibrational levels (i0) can be written as 

G olol = 4c v ~ exp ( - -  g~-) g5 [(l - -  cos X) + 2 cos xQ~ (g, X)] %d2f~dg, ( 11 ) 

01 S The where  c V i s  t h e  h e a t  c a p a c i t y  o f  t h e  v i b r a t i o n a l  d e g r e e s  o f  f r e e d o m  Q10 = Q10 + Q10 L- 
i n d e x  S r e f e r s  t o  t h e  p r o b a b i l i t i e s  o f  t h e  V-V e x c h a n g e  computed  by t a k i n g  i n t o  a c c o u n t  o n l y  
t h e  s h o r t - r a n g e  i n t e r a c t i o n s  o f  t h e  c o l l i d i n g  m o l e c u l e s ,  t h e  i n d e x  L d e n o t e s  t h e  c a l c u l a t i o n  
u s i n g  t h e  l o n g - r a n g e  f o r c e s .  At low t e m p e r a t u r e s  f o r  d i p o l e  m o l e c u l e s  Q10 L >> Q10 S [ 9 ] .  Us ing  
t h e  d e p e n d e n c e  o f  Q10 S on v e l o c i t y  [ 1 0 ] ,  t h e  method o f  t h e  m o d i f i e d  quantum number ,  i n t r o d u c e d  
by T a k a y a n a g i ,  f o r  t h e  d e p e n d e n c e  o f  t h e  p r o b a b i l i t y  Q i 0 ~  on t h e  c o l l i s i o n  p a r a m e t e r  [ 1 1 ] ,  
and t h e  h a r d  s p h e r e  model  f o r  o 0 [ 8 ] ,  we o b t a i n  Q l o S ( g ,  • = Q10S(T)g2(1  - c o s x ) / 2 .  S u b s t i t u t -  
ing  t h i s  q u a n t i t y  i n t o  (11)  and i n t e g r a t i n g  we f i n d  o u t  t h a t  t h e  r a t i o  o f  t h e  V-V e x c h a n g e  
c o n t r i b u t i o n  t o  t h e  c o n t r i b u t i o n  o f  t h e  e l a s t i c  c o l l i s i o n s  in  (11)  i s  e q u a l  t o  Qi0S(T)  - t h e  
m a g n i t u d e  o f  t h e  V-V e x c h a n g e  p r o b a b i l i t y  a v e r a g e d  o v e r  t h e  v e l o c i t i e s  o f  m o l e c u l e s .  For  
n i t r o g e n  t h i s  q u a n t i t y  i s  c a l c u l a t e d  in  [10 ] :  Qi0 S = 3 . 7 . 1 0 - S T .  C o n s e q u e n t l y ,  in  t h e  t em-  
p e r a t u r e  i n t e r v a l  u n d e r  c o n s i d e r a t i o n  (100 K < T < 700 K) one can  n e g l e c t  t h e  V-V e x c h a n g e  f o r  
n i t r o g e n  S i m i l a r  e s t i m a t e s  can  be e a s i l y  c a r r i e d  o u t  f o r  CO u s i n g  a more  c o m p l i c a t e d  de -  
p e n d e n c e  o f  Q10 L on g and X [ 9 ] .  Hav ing  i n t e g r a t e d  (11)  we f i n d  an e s t i m a t e  o f  t h e  r a t i o s  o f  
t h e  c o n t r i b u t i o n s  o f  t h e  c o r r e s p o n d i n g  p r o c e s s e s :  cQ10L(T) where  c ~ 1. For  100 K < T < 700 K 
1 . 5 . 1 0  -2 > Q10L(T) > 3 .10  -3 [ 9 ] .  T h e r e f o r e  in  CO one can  n e g l e c t  t h e  V-V e x c h a n g e  as  w e l l .  
I n  t a k i n g  i n t o  a c c o u n t  o n l y  t h e  e l a s t i c  c o l l i s i o n s  t h e  i n t e g r a l  r e d u c e s  t o  s t a n d a r d  ~ i n t e g r a l s  
[5] and t h e  e x p r e s s i o n s  f o r  t h e  h e a t  c o n d u c t i o n  c o e f f i c i e n t s  h a v e  t h e  fo rm 

_ 7 5 k r  = 0 ,  

32m.0(2.2) ' 

3 kT "~ Oni 
~ - -  8 m~(1.1 ) ~ ~ Ei = pDcr, 

i 

v 3 kT Oni 
- s = , o D o r  

i 

(12) 
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Here D is the coefficient of mutual molecular diffusion; CT, V are the corresponding heat ca- 
pacities. Accordingly, if the cross sections for inelastic processes are small, the processes 
of vibrational heat conduction can be reduced to the diffusion of vibrational energy [4]. For 
molecules with a large dipole moment (e.g., CO 2 and N20) the cross sections of the resonance 
V-V exchange can be significant and for the calculation of the coefficients of vibrational 
heat conduction it is necessary to use the general expressions of the integral (9). An approx- 
imate estimate in this case was given in [12]. For molecules with a small dipole moment (CO, 
HCI) there was no experimental evidence of the difference between the coefficients of vibra- 
tional diffusion and autodiffusion [13] which qualitatively supports the correctness of 
expressions (12). 

In Figs. i and 2 we show the values of the heat conduction coefficients for vibrationally 
excited CO for T = i00, 200, 300, 400, 500, 700 K - curves 1-6; curve 7 represents the result 
for the Boltzmann distribution on vibrational levels. Figures 3 and 4 show analogous results 
for N 2 . 

We will compare the heat conduction coefficients (12), computed for anharmonic molecules 
and a harmonic oscillator [2, 7]. Due to inelastic processes a distribution function n i 

w V V r arises through hich these processes influence I T , I V . Fo a harmonic oscillator [7] when 
only resonance transitions are taken into account ITV = 0. For a gas of anharmonic oscillators 
there exist nonresonant processes whose result is an energy transfer between the translational 
and vibrational degrees of freedom and a strong dependence of n i on T. For a large difference 
between the vibrational and gas temperature the value of IT V can significantly exceed the 
value of the coefficient of the translational heat conduction ITT (Fig. 2 and 4). 

The sign of ITV is related to the temperature dependence ni(T). For different ratios 
Tv/T the principal contribution to R01 I, which determined IT V, comes from different groups 
of vibrational levels. For the lower levels Bni/BT < 0, for the upper ones ani/aT > 0. 
Therefore the dependence of ITV on the vibrational temperature will not be monotonous. For 
T > 200 K and <5000 K the principal contribution to R011 comes from the group of lower levels 
and ITV < 0. Physically, it is related to the fact that the flux of the vibrationally excited 
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molecules from the hot region toward the cold region is smaller than the corresponding flux 
from the cold region to the hot one, so that the total flux of vibrational energy has the 
direction of the temperature gradient. One assumes that the vibrational temperature is con- 
stant in the considered region. Figures 1 and 3 show the comparison of the coefficient %V V 
computed in the anharmonic case and for the Boltzmann distribution of molecules on vibrational 
levels [2, 7]. Exceeding the values of kV V roughly by one order of magnitude is brought 
about by a strong temperature dependence on the vibrational temperature. The flux of vibra- 
tionally excited molecules due to the gradient of translational temperature vanishes in the 
Boltzmann case (kT V = 0). In general in the Boltzmann case the Onsager reciprocity relations 
hold for the cross tems: kTVT 2 = kvTTv 2 [14] 

In the case under investigation the Onsager relations for ~T V and kV T are not fulfilled 
for the following reason. For harmonic molecules the relaxation takes place in two phases. 
During the fast phase the vibrational degrees of freedom are actually an isolated subsystem 
where a quasistationary distribution of molecules in vibrational states with the temperature 
TV, different from T, is established due to the V-V exchange. During the slow phase the V-T 
exchange takes place, leading to the full equilibrium. In the case being considered, it can- 
not be reckoned that the gas -- being an aggregate of two subsystems -- relaxes so that interaction 
initially takes place within the vibrational subsystem and then between this subsystem and 
the translational subsystem. 

Preliminary results, published in [15, 16], were used later in papers on the dynamics 
of vibrational relaxation [17] and in studies of the processes of mixing of vibrationally 
excited molecules [18]. More complete results on the transport processes in the vibrationally 
excited gas obtained in the present article can be a basis for calculation of various phenomena 
in inhomogeneous vibrationally excited nonequilibrium gases. 
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PARTICLE CHARGING IN "HOT" AEROSOLS 

A. V. Fillipov UDC 532.584:537.24 

Electrification of highly conductive alpha- and beta-active particles in dispersed media 
is studied. In order to do so, a single ideally conductive radioactive particle of spherical 
form, located within a nonmoving gas containing ions of both signs, is studied. It is assumed 
that the ion concentration and particle dimensions are so small that the intrinsic electric 
field of the ions may be neglected. In contrast to [3, 4], this study considers the case in 
which the contribution of external readiation sources (including the contribution of radiation 
of otherparticles in the aerosol) to gas ionization is the major one. The results of solu- 
tion of the analogous problem for nonradioactive particles were presented in [5, 6]. We con- 
sider the problem of determining equilibrium concentrations of ions and radioactive particle 
charge with consideration of ion absorption by the particles. Relationships are obtained and 
studied, which describe the equilibrium state of a monodispersed radioactive medium, analo- 
gous to the Sach equations for ionized gases or the equations of the law of acting masses for 
chemically reacting gas masses [i]. 

i. In radioactive aerosols the charges of particles can change due to capture of gas 
ions and because of radiation of alpha- or beta-particles. Propagation of radiation through 
the gas leads to its ionization. In connection with this, the charge of particles and concen- 
tration of ions depend significantly on the concentration of particles and their individual 
activity, which for the most dangerous ("hot") particles can reach values of the order of 
hundreds of Bq (decays/sec) and more [7]. In order to study this phenomenon in the case of 
a low volume concentration of the dispersed phase we will first consider electrification of 
a single spherical particle in a gas which simultaneously contains ions of both signs. The 
equation describing particle electrification has the form 

d.__QQ = y + e ( i+  - -  i_),, ( 1 . 1 )  
dt 

where Q is the particle charge; i• is the flux of positive and negative ions toward the par- 
ticle; e is the charge of a proton; Y is the rate of change of charge due to radioactive ra- 
diation. For definiteness, we will assume below that Y ~ 0, which does not affect the gen- 
erality of the results obtained. 

The quantity Y is related to the particle activity C by the equation Y = emC (where m 
is the mean number of elementary charges lost by the particle in a single decay). We assume 
that the particle diameter is so small that radiation braking within the particle can be 
neglected, so that the relationship m << N is satisfied (where N is the mean number of ion 
pairs formed by radiation in the gas in a single decay). 

In the case of electronic beta-decay m = i, while for alpha-decay due to secondary elec- 
tron emission the quantity m is positive and may reach values of the order of 10-20 [8]. 

We will consider the state of the electric field perturbed by a particle and the distri- 
bution of ion concentrations. We assume that the particle is ideally conductive and that all 
ions reaching the surface of the particle instantly transfer their charge to the particle. 
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